Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the wpfront-user-role-editor domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in E:\SitiWordPress\MicromodenaLab\wordpress\wp-includes\functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio spacious è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in E:\SitiWordPress\MicromodenaLab\wordpress\wp-includes\functions.php on line 6121
New publication on Experimental Neurology: “Neurotoxic effects of coronavirus: Potential implications in Alzheimer’s onset and progression” – MicroModenaLab

The results of a project involving the University of Modena, the University of Bologna, and the “IRCSS Istituto delle Scienze Neurologiche” of Bologna have been recently published. The article by Francesca Beretti, Martina Gatti, Francesco Ricchi, Francesco Lipani, Pietro Cortelli, Claudio Cermelli and Tullia Maraldi has been published in the Experimental Neurology Journal.

ABSTRACT

The COVID-19, caused by SARS-CoV-2, first affects the respiratory tract but evidence is emerging that the virus, reaching the central nervous system (CNS), can lead to severe neurological disorders. In particular, CoV infection could cause an acceleration of the neurodegenerative process. On the other hand, patients diagnosed with Alzheimer’s disease (AD) develop more serious forms of COVID-19 with worse relapses. Therefore, understanding the connection between the two pathologies, AD and infection by coronavirus, could help in the development of new therapeutic approaches to counter them. We used the SH-SY5Y cell line differentiated into neurons, as widely used in studies of AD if supplemented with exogenous fibrillary β-amyloid (Aβ). As a glial counterpart, human microglia (HMC3) and astrocytic (D54MG) cell lines were used to create co-cultures with neurons via transwell systems. In these experimental models, we generated infection with the Human Coronavirus OC43 (HCoV-OC43), a low-risk model of SARS- CoV-2. Our results suggest that the infection by HCoV-OC43 leads to a neurotoxic effect not depending on an already present event of Aβ deposition. Indeed, unlike microglia, neurons and even more astrocytes are susceptible to CoV infection and, although the infection does not show a cytotoxic effect in the neurons in the first few days, significant alterations at a biochemical and morphological level have been observed, suggesting that the neurons are reacting to a stressful condition, including the prodromal and neurodegenerative features of AD. Interest- ingly, the interaction of infected astrocytes with the neurons resulted in the manifestation of signs of neuro- degeneration, such as amyloid-beta deposition. By using exogenous fibrillary Aβ, as an AD in vitro model, our data suggest that there is an aggravating effect both on the infection itself and on the neurological disease progression. In conclusion, the results of this study suggest a causal interplay between HCoV-OC43 and neurological dis- eases and demonstrate that the co-presence of different CNS cell populations is the necessary condition to study the pathogenic effects in vitro as a whole.

See the full text at: https://www.sciencedirect.com/science/article/pii/S0014488624002346?via%3Dihub

New publication on Experimental Neurology: “Neurotoxic effects of coronavirus: Potential implications in Alzheimer’s onset and progression”